Forschung

Download

Ein Bild sagt mehr als tausend Worte. Beitrag erschienen in der planung&analyse

Download

Sind Facebook-Markenbilder ein Zeichen von Markenliebe?

Download

Automatische Bildanalyse in sozialen Medien

In den sozialen Medien sind Fotos mindestens so wichtig wie Text. Allein auf Facebook laden die Mitglieder jeden Tag im Schnitt 350 Millionen Bilder hoch. Für die Marktforschung blieben die Bildinhalte bislang weitgehend verschlossen, jedoch vermitteln viele Bilder wichtige Informationen über Konsumenten und Marken. Das NIM hat  das Tool PictureScan entwickelt, das automatisiert marketing-relevantes Wissen aus benutzergenerierten Fotos gewinnt.

Das Social Media Bilder Projekt - ausgezeichnet mit dem Innovationspreis der deutschen Marktforschung 2016

Die rauschende Party mit Freunden, der Urlaub am Strand, das neu erworbene Smartphone – all das wird mit der Kamera festgehalten und über soziale Netzwerke geteilt. Die Bilderflut ist dementsprechend groß: Die Foto-Sharing-Plattform Flickr umfasst zum Beispiel bereits 8 Milliarden Bilder. Täglich kommen rund 3,5 Millionen hinzu. Die 1,15 Milliarden Facebook-Nutzer laden durchschnittlich 350 Millionen Fotos pro Tag hoch. Die gesamte Fotodatenbasis von Facebook zählt schon 250 Milliarden.

Diese Momentaufnahmen geben nicht nur Einblick in das Leben der Nutzer, sie spiegeln auch deren Einstellungen und Erfahrungen zu Marken und Produkten wider. Und sie beeinflussen einen potenziell großen Kreis an Betrachtern. Dabei ist die Wirkung von Bildern oft größer als von Text, denn sie werden subtiler wahrgenommen und beeinflussen die Emotionen der Betrachter stärker. Benutzergenerierte Fotos zeichnen sich im Vergleich zu professionellen Aufnahmen außerdem durch eine hohe Glaubwürdigkeit aus. Social-Media-Bilder stellen deshalb eine reichhaltige Datenquelle für die Marktforschung dar – die jedoch bislang kaum nutzbar ist, weil bestehende Tools zur Social-Media-Analyse lediglich Wortbeiträge betrachten.

Aufgrund der Vielzahl von Bildern in sozialen Netzwerken ist eine manuelle Auswertung nur in begrenztem Umfang möglich. Deshalb sind automatisierte Verfahren zur Bildanalyse notwendig. Ziel des NIM ist es, ein Tool zu entwickeln, das aus benutzergenerierten Fotos marketing-relevantes Wissen gewinnt. Hierzu müssen die Bildinhalte zunächst mithilfe von Methoden aus dem Bereich der Computer Vision erkannt werden. Durch weitergehende Analysen können Bekanntheit, Beliebtheit und Verwendung von Marken und Produkten bestimmt werden. Diese Kennzahlen werden im Vergleich zum Wettbewerb und im zeitlichen Verlauf ausgewertet. So können Trends aufgedeckt sowie Chancen und Risiken für Image und Absatz geschätzt werden.

Neben einer Analyse der Bildinhalte ist auch eine Betrachtung der Personen, die die Bilder online gestellt haben, von Bedeutung. Daraus lassen sich Interessenprofile bilden, die beispielsweise zur Ansprache im Direktmarketing, der Schaltung von personalisierter Werbung oder der Akquise von Markenbotschaftern im Word-of-Mouth-Marketing nützlich sind. Außerdem untersucht das Projekt, wie marken- und produktbezogene Bilder im Social Web die Präferenzen von Personen beeinflussen. Diese Informationen geben wertvolle Hinweise beispielsweise für die Gestaltung von Anzeigen und Webauftritten sowie zur Steuerung von Mund-zu-Mund-Werbung.     

Auszeichnungen

Kooperationspartner

  • Prof. Dr. Rainer Lienhart, Universität Augsburg
  • Prof. Dr. Aaron Ahuvia, University of Michigan-Dearborn

Publikationen

Kontakt

Head of Artificial Intelligence

Projekt teilen
Zum Seitenanfang